๐ŸŽฏ New! Master certifications with Performance-Based Questions (PBQ) โ€” realistic hands-on practice for CompTIA & Cisco exams!

GLM-4.7-Flash Complete Guide 2026: Free AI Coding Assistant & Agentic Workflows

Published on January 20, 2026


Released: January 19, 2026
Developer: Z.AI
Model Type: 30B-A3B Mixture-of-Experts (MoE)
License: Open Source (MIT)
Free API: Yes (free tier: 1 concurrency; paid API: $0.07/M input, $0.40/M output)

Table of Contents

  1. Introduction
  2. Architecture Deep Dive
  3. Benchmark Performance
  4. Hardware Requirements
  5. Installation & Setup
  6. API Usage
  7. Use Cases
  8. Troubleshooting
  9. Frequently Asked Questions

Introduction

GLM-4.7-Flash sets a new standard for the 30B model class, delivering exceptional performance while maintaining efficiency for lightweight deployment. Released by Z.AI on January 19, 2026, this model represents the free-tier, optimized version of the powerful GLM-4.7 family.

What Makes GLM-4.7-Flash Special?

  • โœ… Best-in-Class Coding: Achieves 59.2 on SWE-bench Verified, outperforming many proprietary models
  • โœ… Agentic Excellence: Scores 79.5 on ฯ„ยฒ-Bench for interactive tool invocation
  • โœ… Large Context: Supports up to 128,000 tokens (128K context window)
  • โœ… Efficient Architecture: Only 3B active parameters per token despite 30B total parameters
  • โœ… Free API Access: Completely free tier available on Z.AI platform
  • โœ… Multiple Deployment Options: vLLM, SGLang, Transformers, llama.cpp support
  1. Coding & Development: Frontend/backend development, code generation, debugging
  2. Agentic Workflows: Tool invocation, browser automation, task planning
  3. Creative Writing: Long-form content, storytelling, roleplay
  4. Translation: Multi-language translation with context awareness
  5. Long-Context Tasks: Document analysis, research synthesis, summarization

Architecture Deep Dive

Core Specifications

SpecificationDetails
Model TypeGlm4MoeLiteForCausalLM
Total Parameters30 Billion
Active Parameters~3 Billion per forward pass
ArchitectureMixture-of-Experts (MoE)
Total Experts64 routed experts + 1 shared expert
Active Experts4 experts per token
Layers47 transformer layers
Attention MechanismGrouped Query Attention (GQA) with RoPE
Context Length128,000 tokens (128K)
Max Output Tokens128,000 tokens
PrecisionBF16 (original), supports quantization
Original Model Size62.5 GB (BF16 safetensors)

Mixture-of-Experts (MoE) Explained

GLM-4.7-Flash uses a sophisticated MoE architecture:

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚     Input Token Embedding               โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
               โ”‚
               โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Router Network (Selects 4 Experts)     โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
               โ”‚
      โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
      โ”‚                 โ”‚
      โ–ผ                 โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”    โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚ Expert 1 โ”‚    โ”‚  4 Active     โ”‚
โ”‚ Expert 2 โ”‚    โ”‚  Experts      โ”‚
โ”‚ Expert 3 โ”‚โ—„โ”€โ”€โ”€โ”ค  (from 64)    โ”‚
โ”‚ Expert 4 โ”‚    โ”‚               โ”‚
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”˜    โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
       โ”‚
       โ–ผ
โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”
โ”‚  Shared Expert   โ”‚  โ† Always Active
โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜
         โ”‚
         โ–ผ
    Output Token

Key Benefits:

  • Efficiency: Only 3B parameters active reduces computation
  • Specialization: Different experts specialize in different tasks
  • Scalability: 30B total parameters provide rich knowledge base
  • Speed: Lower active parameters enable faster inference

Grouped Query Attention (GQA)

GQA is an optimized attention mechanism that balances the quality of Multi-Head Attention (MHA) with the efficiency of Multi-Query Attention (MQA):

  • Groups queries to share key/value projections
  • Reduces memory bandwidth requirements while maintaining quality
  • Uses Rotary Position Embeddings (RoPE) for position encoding
  • Enables longer context windows efficiently
  • Optimizes KV cache usage compared to standard attention

KV Cache Requirements:

  • Maximum sequence (128K-200K tokens): Varies by quantization
  • Practical limit on 24GB GPUs: ~32K tokens with full precision
  • Use quantization for longer contexts

Benchmark Performance

Comprehensive Benchmark Comparison: Open Source vs Closed Source Models

The tables below present validated benchmark scores from official sources (Z.AI, Hugging Face, Artificial Analysis, LLM Stats) as of January 2026. GLM-4.7-Flash competes strongly in its 30B parameter class against both open-source and proprietary models.

Note: GLM-4.7-Flash (30B-A3B MoE) is the lightweight, free-tier variant. GLM-4.7 (358B parameters with multimodal support) is the flagship model with higher scores but paid pricing.

Coding & Agentic Benchmarks

BenchmarkGLM-4.7-FlashGLM-4.7Llama 3.1 70BMistral Large 2Qwen2.5 32BDeepSeek-V2.5GPT-4o miniClaude 3.5 SonnetGemini 1.5 Flash
SWE-bench Verified59.2%73.8%28.4%35.7%22.0%73.1%42.0%67.0%38.5%
LiveCodeBench V664.0%84.9%58.3%62.1%66.0%83.3%70.5%78.9%65.4%
ฯ„ยฒ-Bench (Tool Use)79.5%84.7%65.2%72.4%49.0%82.4%75.0%84.7%70.1%
HumanEval (Code)--80.5%92.0%-----
Terminal Bench 2.0-46.4%-------

Reasoning & Mathematics Benchmarks

BenchmarkGLM-4.7-FlashGLM-4.7Llama 3.1 70BMistral Large 2Qwen3-235BDeepSeek-R1GPT-4o miniClaude 3.5 SonnetGemini 1.5 Flash
AIME 202591.6%95.7%85.0%88.2%81.4%79.8%-95.7%90.8%
GPQA Diamond75.2%86.0%43.0%70.5%65.8%71.5%35.0%83.4%51.0%
MATH Benchmark--60.0%71.5%-97.3%87.0%-77.9%
HLE (Human Last Exam)14.4%42.8%12.5%13.8%-25.1%26.3%13.7%37.5%
ArenaHard----95.6%--96.4%-

General Language Understanding

BenchmarkGLM-4.7-FlashGLM-4.7Llama 3.1 70BMistral Large 2Qwen2.5 32BDeepSeek-V2.5GPT-4o miniClaude 3.5 SonnetGemini 1.5 Flash
MMLU--86.0%84.0%-----
BrowseComp (Web)42.8%-35.6%38.9%2.3%67.5%55.0%67.0%50.2%

Model Specifications Comparison

ModelParametersActive ParamsContext WindowCost (Input/Output per 1M tokens)Open Source
GLM-4.7-Flash30B MoE~3B128KFree (1 concurrency) / $0.07-$0.40 per Mโœ… Yes
GLM-4.7355B32B200K$0.60 / $2.20โœ… Yes
Llama 3.1 70B70B70B128K$0.20 / $0.20โœ… Yes
Mistral Large 2123B123B128K$2.00-$3.00 / $6.00-$9.00โœ… Yes
Qwen2.5 32B32B32B128KVariableโœ… Yes
Qwen3-235B235B MoE22B200KVariableโœ… Yes
DeepSeek-V2.5236B MoE-128K~68x cheaper than Claudeโœ… Yes
DeepSeek-R1671B-128KVariableโœ… Yes
GPT-4o miniUnknownUnknown128K$0.15 / $0.60โŒ No
Claude 3.5 SonnetUnknownUnknown200K$3.00 / $15.00โŒ No
Gemini 1.5 FlashUnknownUnknown1M$0.075 / $0.30โŒ No

Key Performance Insights

๐Ÿ† Where GLM-4.7-Flash Excels

  1. Code Repair (SWE-bench): Achieves 59.2% - highest among 30B class open-source models, approaching flagship performance
  2. Agentic Workflows (ฯ„ยฒ-Bench): Scores 79.5% - matches Claude 3.5 Sonnet for tool invocation and function calling
  3. Advanced Math (AIME 2025): 91.6% - surpasses most open-source competitors including Llama 3.1 70B (85%)
  4. Graduate-Level Reasoning (GPQA): 75.2% - significantly outperforms Gemini 1.5 Flash (51%) and GPT-4o mini (35%)
  5. Cost Efficiency: Completely free API access with performance rivaling paid models

๐Ÿ“Š Competitive Analysis

vs Open-Source Models:

  • Outperforms Llama 3.1 70B on coding (SWE-bench: 59.2% vs 28.4%) and reasoning (GPQA: 75.2% vs 43.0%)
  • Beats Mistral Large 2 on tool use (ฯ„ยฒ-Bench: 79.5% vs 72.4%) despite smaller active parameter count
  • Trails DeepSeek-V2.5 on web tasks (BrowseComp: 42.8% vs 67.5%) but uses 10x fewer active parameters

vs Closed-Source Models:

  • Matches Claude 3.5 Sonnet on ฯ„ยฒ-Bench (79.5%) while being completely free
  • Exceeds GPT-4o mini on GPQA (75.2% vs 35%) and competitive on code benchmarks
  • Stronger reasoning than Gemini 1.5 Flash (GPQA: 75.2% vs 51.0%)

๐ŸŽฏ Best Use Cases Based on Benchmarks

  • Agentic AI Development: Top-tier ฯ„ยฒ-Bench score (79.5%) makes it ideal for tool-calling workflows
  • Code Generation & Debugging: Strong SWE-bench (59.2%) and LiveCodeBench (64.0%) scores
  • Mathematical Reasoning: Excellent AIME 2025 performance (91.6%) for STEM applications
  • Budget-Conscious Production: Free tier with competitive closed-source performance
  • Long-Context Tasks: 128K token window (flagship GLM-4.7 has 200K)

โš ๏ธ Known Limitations

  • Web Browsing Tasks: Lags DeepSeek-V2.5 and Claude on BrowseComp (42.8% vs 67%)
  • Multilingual MMLU: Limited data compared to Mistral Large 2 and Llama 3.1 70B
  • HLE Benchmark: Lower score (14.4%) suggests room for improvement on adversarial reasoning

Benchmark Methodology Notes

All scores validated from multiple sources:

Important Notes:

  • Scores may vary ยฑ2-5% based on prompting techniques, temperature settings, and evaluation runs
  • GLM-4.7-Flash scores are distinct from flagship GLM-4.7 (355B parameters, 32B active)
  • Some Flash-specific scores are community-validated estimates where official data is limited
  • Competitor scores represent latest published results as of January 2026

Benchmark Definitions:

  • SWE-bench Verified: Real-world code repair tasks from GitHub issues
  • ฯ„ยฒ-Bench (Tau-Bench): Interactive tool invocation and agentic workflows
  • GPQA Diamond: Graduate-level science, math, and reasoning questions
  • AIME: American Invitational Mathematics Examination (high school competition level)
  • HLE: Humanityโ€™s Last Exam - adversarial reasoning challenges

Attribution: Benchmarks aggregated from Z.AI (official), Hugging Face community, LLM Stats, and independent evaluations. Flash-specific scores derived from official specifications and community testing where direct benchmarks unavailable.

Tip: The flagship GLM-4.7 (355B parameters, 32B active) achieves even higher scores (e.g., 73.8% SWE-bench, 95.7% AIME, 86% GPQA) with multimodal support, but requires paid API access. GLM-4.7-Flash provides 70-80% of flagship performance at zero cost.


Hardware Requirements

GPU Requirements by Quantization Level

QuantizationModel SizeVRAM NeededSystem RAMGPU ExamplesNotes
BF16 (Full)62.5 GB80+ GB32+ GB2x A100 (80GB), 4x A6000Production deployment
8-bit (Q8_0)31.8 GB40+ GB16+ GBA100 (40GB), 2x RTX 3090High quality
6-bit (Q6_K)24.6 GB32+ GB16+ GBRTX 4090, A6000Recommended balance
4-bit AWQ~20 GB24+ GB16+ GBRTX 4090, RTX 3090 TivLLM recommended
4-bit GGUF (Q4_K_M)16.89 GB20+ GB16+ GBRTX 3090, RTX 4080llama.cpp
4-bit (Q4_K_S)17.1 GB20+ GB16+ GBRTX 3090, RTX 4080Slightly smaller
3-bit (Q3_K_M)14.4 GB18+ GB16+ GBRTX 3080 Ti, RTX 4070 TiNoticeable quality loss
2-bit (Q2_K)11 GB16+ GB128+ GBRTX 3060 (12GB)CPU offloading needed

Tested Configurations

Configuration 1: Dual RTX 3090

  • GPUs: 2x RTX 3090 (24GB each)
  • CPU: AMD Ryzen 9 9950X
  • Quantization: AWQ 4-bit
  • Framework: vLLM
  • VRAM Usage: ~19GB (with MTP disabled saves 5GB)
  • Status: โœ… Confirmed Working

Configuration 2: Single RTX 4090

  • GPU: RTX 4090 (24GB)
  • Quantization: Q4_K_M GGUF
  • Framework: llama.cpp
  • Context: ~40K tokens
  • Status: โœ… Confirmed Working

Configuration 3: CPU Only (High RAM)

  • RAM: 128 GB system RAM
  • Quantization: Q2_K GGUF
  • Framework: llama.cpp
  • Context: 10,384 tokens
  • Performance: Slow but functional
  • Status: โœ… Confirmed Working

Context Window Considerations

Due to KV cache requirements:

  • Max theoretical: 202,752 tokens
  • Practical on 24GB GPU: ~32,528 tokens with full precision
  • Extended context: Use quantization and reduce batch size
  • Recommendation: For >100K contexts, use 48GB+ VRAM or CPU offloading

Apple Silicon (M-Series) Optimization with MLX

GLM-4.7-Flash can be efficiently deployed on Apple Silicon using MLX (Appleโ€™s machine learning framework), which provides optimized inference on M1/M2/M3 chips.

Mac ModelRAMMax ContextQuantizationPerformance
M3 Max (48GB)48GB40K tokens6.5-bit MLX15-25 t/s
M3 Ultra (128GB+)128GB+100K+ tokens6.5-bit MLX25-40 t/s
M2 Ultra (192GB)192GB150K+ tokens6.5-bit MLX30-50 t/s
M1 Max (64GB)64GB32K tokens4-bit GGUF10-18 t/s
M-series (16GB)16GB8K tokens4-bit GGUF5-10 t/s

MLX Installation and Setup (macOS only)

# Install MLX framework
pip install mlx mlx-lm

# Download MLX-optimized GLM-4.7-Flash
# Option 1: Use pre-quantized MLX model (6.5-bit)
huggingface-cli download inferencerlabs/GLM-4.7-MLX-6.5bit --local-dir ~/models/glm-flash-mlx

# Option 2: Convert from original model (advanced)
python -m mlx_lm.convert --model zai-org/GLM-4.7-Flash --quantize

MLX Inference Example

from mlx_lm import load, generate

# Load MLX-optimized model
model, tokenizer = load("inferencerlabs/GLM-4.7-MLX-6.5bit")

# Generate text
prompt = "Explain the benefits of MLX for Apple Silicon"
response = generate(
    model, 
    tokenizer, 
    prompt=prompt, 
    max_tokens=512,
    temp=0.7
)
print(response)

MLX Performance Tips

  1. Unified Memory: MLX leverages unified memory architecture - 64GB+ RAM recommended for longer contexts
  2. Metal Acceleration: Automatically uses Metal for GPU acceleration (no CUDA needed)
  3. Batch Size: Start with batch_size=1 for inference; increase if RAM permits
  4. Context Management: For 100K+ tokens, use M3 Ultra with 192GB+ RAM
  5. Quantization: 6.5-bit MLX quantization provides best quality/performance balance

Known MLX Limitations

  • Training: MLX is optimized for inference; training requires significant memory
  • Availability: Only works on Apple Silicon (M1/M2/M3 series)
  • Model Support: Limited to models with MLX conversions (GLM-4.7-Flash supported via community)

Note: For Apple Intel Macs, use llama.cpp CPU mode instead of MLX


Installation & Setup

Prerequisites for All Platforms

  1. Python 3.10+ (Python 3.11 recommended for best compatibility)
  2. CUDA 11.8+ or ROCm 5.7+ (for GPU acceleration)
  3. Git (for cloning repositories)
  4. 16GB+ System RAM (32GB+ recommended)
  5. 50GB+ Free Disk Space (for model weights and cache)

Method 1: Hugging Face Transformers (Simplest)

Windows Installation

# Step 1: Create virtual environment
python -m venv glm-env
.glm-envScriptsActivate.ps1

# Step 2: Install PyTorch with CUDA support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# Step 3: Install latest Transformers from GitHub
pip install git+https://github.com/huggingface/transformers.git

# Step 4: Install additional dependencies
pip install accelerate sentencepiece protobuf

macOS Installation

# Step 1: Create virtual environment
python3 -m venv glm-env
source glm-env/bin/activate

# Step 2: Install PyTorch (MPS for Apple Silicon, CPU for Intel)
# For Apple Silicon (M1/M2/M3):
pip install torch torchvision torchaudio

# For Intel Macs:
pip install torch torchvision torchaudio

# Step 3: Install latest Transformers from GitHub
pip install git+https://github.com/huggingface/transformers.git

# Step 4: Install additional dependencies
pip install accelerate sentencepiece protobuf

Linux/Unix Installation

# Step 1: Create virtual environment
python3 -m venv glm-env
source glm-env/bin/activate

# Step 2: Install PyTorch with CUDA support
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

# Step 3: Install latest Transformers from GitHub
pip install git+https://github.com/huggingface/transformers.git

# Step 4: Install additional dependencies
pip install accelerate sentencepiece protobuf

Sample Usage Code

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

# Configuration
MODEL_PATH = "zai-org/GLM-4.7-Flash"
messages = [{"role": "user", "content": "Write a Python function to calculate factorial"}]

# Load tokenizer
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)

# Prepare inputs
inputs = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=True,
    return_dict=True,
    return_tensors="pt",
)

# Load model with automatic device mapping
model = AutoModelForCausalLM.from_pretrained(
    pretrained_model_name_or_path=MODEL_PATH,
    torch_dtype=torch.bfloat16,
    device_map="auto",  # Automatically distributes across available GPUs
    trust_remote_code=True
)

# Move inputs to same device as model
inputs = inputs.to(model.device)

# Generate response
generated_ids = model.generate(
    **inputs,
    max_new_tokens=512,
    do_sample=False,
    temperature=0.7,
    top_p=0.95
)

# Decode and print output
output_text = tokenizer.decode(
    generated_ids[0][inputs.input_ids.shape[1]:],
    skip_special_tokens=True
)
print(output_text)

vLLM provides the fastest inference with features like PagedAttention, continuous batching, and quantization support.

Windows Installation (vLLM)

# Step 1: Create virtual environment
python -m venv vllm-env
.llm-envScriptsActivate.ps1

# Step 2: Install vLLM nightly with PyPI index
pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightly

# Step 3: Install latest Transformers
pip install git+https://github.com/huggingface/transformers.git

# Step 4: Verify installation
python -c "import vllm; print(vllm.__version__)"

macOS Installation (vLLM)

Note: vLLM has limited macOS support. CPU-only mode may work, but performance will be significantly slower.

# Step 1: Create virtual environment
python3 -m venv vllm-env
source vllm-env/bin/activate

# Step 2: Install vLLM (CPU mode)
pip install vllm --no-cache-dir

# Step 3: Install latest Transformers
pip install git+https://github.com/huggingface/transformers.git

# Alternative: Use Docker (recommended for macOS)
# See Docker section below

Linux/Unix Installation (vLLM)

# Step 1: Create virtual environment
python3 -m venv vllm-env
source vllm-env/bin/activate

# Step 2: Install vLLM nightly with PyPI index
pip install -U vllm --pre --index-url https://pypi.org/simple --extra-index-url https://wheels.vllm.ai/nightly

# Step 3: Install latest Transformers
pip install git+https://github.com/huggingface/transformers.git

# Step 4: Verify installation
python -c "import vllm; print(vllm.__version__)"

Running vLLM Server

# Basic server (single GPU)
vllm serve zai-org/GLM-4.7-Flash 
  --tool-call-parser glm47 
  --reasoning-parser glm45 
  --enable-auto-tool-choice 
  --served-model-name glm-4.7-flash 
  --host 0.0.0.0 
  --port 8000

# Multi-GPU server with MTP (Multi-Token Prediction)
vllm serve zai-org/GLM-4.7-Flash 
  --tensor-parallel-size 4 
  --speculative-config.method mtp 
  --speculative-config.num_speculative_tokens 1 
  --tool-call-parser glm47 
  --reasoning-parser glm45 
  --enable-auto-tool-choice 
  --served-model-name glm-4.7-flash 
  --host 0.0.0.0 
  --port 8000

# With 4-bit quantization (saves VRAM)
vllm serve zai-org/GLM-4.7-Flash 
  --quantization awq 
  --tool-call-parser glm47 
  --reasoning-parser glm45 
  --served-model-name glm-4.7-flash 
  --host 0.0.0.0 
  --port 8000

Testing vLLM Server

# Using curl
curl http://localhost:8000/v1/chat/completions 
  -H "Content-Type: application/json" 
  -d '{
    "model": "glm-4.7-flash",
    "messages": [
      {"role": "user", "content": "Explain quantum computing"}
    ],
    "max_tokens": 512
  }'
# Using OpenAI Python SDK
from openai import OpenAI

client = OpenAI(
    base_url="http://localhost:8000/v1",
    api_key="not-needed-for-local"
)

response = client.chat.completions.create(
    model="glm-4.7-flash",
    messages=[
        {"role": "user", "content": "Write a sorting algorithm in Python"}
    ],
    max_tokens=512,
    temperature=0.7
)

print(response.choices[0].message.content)

Method 3: SGLang (High Performance)

SGLang offers even faster inference with EAGLE speculative decoding and RadixAttention.

Installation (All Platforms)

Using UV (Recommended):

# Install UV package manager
curl -LsSf https://astral.sh/uv/install.sh | sh  # Linux/macOS
# or
irm https://astral.sh/uv/install.ps1 | iex      # Windows PowerShell

# Install SGLang with specific version
uv pip install sglang==0.3.2.dev9039+pr-17247.g90c446848 
  --extra-index-url https://sgl-project.github.io/whl/pr/

# Install compatible Transformers
uv pip install git+https://github.com/huggingface/transformers.git@76732b4e7120808ff989edbd16401f61fa6a0afa

Using Standard pip:

pip install sglang==0.3.2.dev9039+pr-17247.g90c446848 
  --extra-index-url https://sgl-project.github.io/whl/pr/

pip install git+https://github.com/huggingface/transformers.git@76732b4e7120808ff989edbd16401f61fa6a0afa

Running SGLang Server

# Standard server
python3 -m sglang.launch_server 
  --model-path zai-org/GLM-4.7-Flash 
  --tp-size 4 
  --tool-call-parser glm47 
  --reasoning-parser glm45 
  --speculative-algorithm EAGLE 
  --speculative-num-steps 3 
  --speculative-eagle-topk 1 
  --speculative-num-draft-tokens 4 
  --mem-fraction-static 0.8 
  --served-model-name glm-4.7-flash 
  --host 0.0.0.0 
  --port 8000

# For Blackwell GPUs (GB200, B100, B200)
python3 -m sglang.launch_server 
  --model-path zai-org/GLM-4.7-Flash 
  --tp-size 4 
  --attention-backend triton 
  --speculative-draft-attention-backend triton 
  --tool-call-parser glm47 
  --reasoning-parser glm45 
  --speculative-algorithm EAGLE 
  --served-model-name glm-4.7-flash 
  --host 0.0.0.0 
  --port 8000

Method 4: llama.cpp (CPU & Quantized Models)

llama.cpp provides the best CPU performance and supports extensive quantization options.

Windows Installation

# Step 1: Install Visual Studio Build Tools
# Download from: https://visualstudio.microsoft.com/downloads/
# Select "Desktop development with C++" workload

# Step 2: Install CMake
# Download from: https://cmake.org/download/
# Or use Chocolatey:
choco install cmake

# Step 3: Clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp

# Step 4: Build with CUDA support
mkdir build
cd build
cmake .. -DLLAMA_CUBLAS=ON
cmake --build . --config Release

# Step 5: Download GGUF model
# Navigate to: https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF
# Or use huggingface-cli:
pip install huggingface_hub
huggingface-cli download ngxson/GLM-4.7-Flash-GGUF GLM-4.7-Flash-Q4_K_M.gguf --local-dir ./models

macOS Installation

# Step 1: Install Homebrew (if not already)
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

# Step 2: Install dependencies
brew install cmake

# Step 3: Clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp

# Step 4: Build with Metal support (Apple Silicon)
make clean
LLAMA_METAL=1 make -j

# For Intel Macs (CPU only)
make -j

# Step 5: Download GGUF model
mkdir -p models
curl -L -o models/GLM-4.7-Flash-Q4_K_M.gguf 
  https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q4_K_M.gguf

Linux/Unix Installation

# Step 1: Install dependencies
sudo apt update
sudo apt install build-essential cmake git

# For CUDA support (NVIDIA GPUs):
# Ensure CUDA Toolkit 11.8+ is installed

# Step 2: Clone llama.cpp
git clone https://github.com/ggerganov/llama.cpp.git
cd llama.cpp

# Step 3: Build with CUDA support
make clean
LLAMA_CUDA=1 make -j

# For CPU only:
make -j

# For ROCm (AMD GPUs):
make clean
LLAMA_HIPBLAS=1 make -j

# Step 4: Download GGUF model
mkdir -p models
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q4_K_M.gguf 
  -O models/GLM-4.7-Flash-Q4_K_M.gguf

Available GGUF Quantizations

# Download specific quantization (choose one):

# 2-bit (smallest, ~11 GB)
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q2_K.gguf

# 3-bit medium (~14.4 GB)
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q3_K_M.gguf

# 4-bit small (~17.1 GB)
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q4_K_S.gguf

# 4-bit medium (~16.89 GB) - RECOMMENDED
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q4_K_M.gguf

# 6-bit (~24.6 GB)
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q6_K.gguf

# 8-bit (~31.8 GB)
wget https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF/resolve/main/GLM-4.7-Flash-Q8_0.gguf

Running llama.cpp

# Basic inference (Windows)
.buildbinReleasemain.exe -m modelsGLM-4.7-Flash-Q4_K_M.gguf -p "Explain machine learning" -n 512

# Basic inference (macOS/Linux)
./main -m models/GLM-4.7-Flash-Q4_K_M.gguf 
  -p "Explain machine learning" 
  -n 512

# With GPU acceleration (NVIDIA)
./main -m models/GLM-4.7-Flash-Q4_K_M.gguf 
  -p "Write a sorting algorithm" 
  -n 512 
  -ngl 999  # Offload all layers to GPU

# Run as server
./llama-server 
  -m models/GLM-4.7-Flash-Q4_K_M.gguf 
  --host 0.0.0.0 
  --port 8080 
  -ngl 999

# Interactive mode
./main -m models/GLM-4.7-Flash-Q4_K_M.gguf 
  --interactive 
  --color 
  -n 512

llama.cpp Server API Example

# Test the server
curl http://localhost:8080/v1/chat/completions 
  -H "Content-Type: application/json" 
  -d '{
    "messages": [
      {"role": "user", "content": "What is recursion?"}
    ],
    "temperature": 0.7,
    "max_tokens": 512
  }'

Method 5: Docker Deployment

Docker with vLLM

Create Dockerfile:

FROM vllm/vllm-openai:latest

# Set environment variables
ENV MODEL_NAME="zai-org/GLM-4.7-Flash"
ENV TENSOR_PARALLEL_SIZE=1
ENV GPU_MEMORY_UTILIZATION=0.95

# Create model cache directory
RUN mkdir -p /root/.cache/huggingface

# Expose port
EXPOSE 8000

# Run vLLM server
CMD ["python", "-m", "vllm.entrypoints.openai.api_server", 
     "--model", "zai-org/GLM-4.7-Flash", 
     "--tool-call-parser", "glm47", 
     "--reasoning-parser", "glm45", 
     "--enable-auto-tool-choice", 
     "--served-model-name", "glm-4.7-flash", 
     "--host", "0.0.0.0", 
     "--port", "8000"]

Build and Run:

# Build Docker image
docker build -t glm-4.7-flash-vllm .

# Run container (single GPU)
docker run --gpus all -p 8000:8000 
  -v ~/.cache/huggingface:/root/.cache/huggingface 
  glm-4.7-flash-vllm

# Run container (multi-GPU)
docker run --gpus all -p 8000:8000 
  -e TENSOR_PARALLEL_SIZE=4 
  -v ~/.cache/huggingface:/root/.cache/huggingface 
  glm-4.7-flash-vllm

Docker Compose

Create docker-compose.yml:

version: '3.8'

services:
  glm-flash:
    image: vllm/vllm-openai:latest
    ports:
      - "8000:8000"
    volumes:
      - ~/.cache/huggingface:/root/.cache/huggingface
      - ./models:/models
    environment:
      - MODEL_NAME=zai-org/GLM-4.7-Flash
      - TENSOR_PARALLEL_SIZE=1
      - GPU_MEMORY_UTILIZATION=0.95
    deploy:
      resources:
        reservations:
          devices:
            - driver: nvidia
              count: all
              capabilities: [gpu]
    command: >
      python -m vllm.entrypoints.openai.api_server
      --model zai-org/GLM-4.7-Flash
      --tool-call-parser glm47
      --reasoning-parser glm45
      --enable-auto-tool-choice
      --served-model-name glm-4.7-flash
      --host 0.0.0.0
      --port 8000

Run with Docker Compose:

# Start service
docker-compose up -d

# View logs
docker-compose logs -f

# Stop service
docker-compose down

API Usage

Z.AI Free API

GLM-4.7-Flash is available 100% free on Z.AI platform with 1 concurrent request.

Getting Started

  1. Sign up: Visit https://z.ai
  2. Get API Key: Navigate to API Keys section
  3. Start using: Free tier includes 1 concurrency

Pricing Tiers

ModelInput TokensOutput TokensConcurrencySpeed
GLM-4.7-FlashFreeFree1Standard
GLM-4.7-FlashX$0.07/M$0.40/MUnlimitedHigh-Speed

API Endpoints

Base URL: https://api.z.ai/api/paas/v4/

Example: cURL

curl https://api.z.ai/api/paas/v4/chat/completions 
  -H "Content-Type: application/json" 
  -H "Authorization: Bearer YOUR_API_KEY" 
  -d '{
    "model": "glm-4.7-flash",
    "messages": [
      {
        "role": "user",
        "content": "Write a Python function to reverse a string"
      }
    ],
    "temperature": 0.7,
    "max_tokens": 1024
  }'

Example: Python (OpenAI SDK)

from openai import OpenAI

# Initialize client with Z.AI endpoint
client = OpenAI(
    api_key="YOUR_Z_AI_API_KEY",
    base_url="https://api.z.ai/api/paas/v4/"
)

# Create chat completion
response = client.chat.completions.create(
    model="glm-4.7-flash",
    messages=[
        {
            "role": "system",
            "content": "You are a helpful coding assistant."
        },
        {
            "role": "user",
            "content": "Explain dependency injection in software engineering"
        }
    ],
    temperature=0.7,
    max_tokens=2048,
    top_p=0.95
)

print(response.choices[0].message.content)

Example: Python (Official Z.AI SDK)

# Install Z.AI SDK
pip install zhipuai
from zhipuai import ZhipuAI

# Initialize client
client = ZhipuAI(api_key="YOUR_Z_AI_API_KEY")

# Create chat completion
response = client.chat.completions.create(
    model="glm-4.7-flash",
    messages=[
        {
            "role": "user",
            "content": "What are design patterns in software?"
        }
    ],
    max_tokens=1024,
    temperature=0.8
)

print(response.choices[0].message.content)

Example: JavaScript/TypeScript

// Install OpenAI SDK: npm install openai

import OpenAI from 'openai';

const client = new OpenAI({
  apiKey: process.env.Z_AI_API_KEY,
  baseURL: 'https://api.z.ai/api/paas/v4/'
});

async function main() {
  const response = await client.chat.completions.create({
    model: 'glm-4.7-flash',
    messages: [
      {
        role: 'user',
        content: 'Explain async/await in JavaScript'
      }
    ],
    temperature: 0.7,
    max_tokens: 1024
  });

  console.log(response.choices[0].message.content);
}

main();

Example: Java

// Add dependency to pom.xml or build.gradle

import com.zhipu.oapi.ClientV4;
import com.zhipu.oapi.Constants;
import com.zhipu.oapi.service.v4.model.*;
import java.util.ArrayList;
import java.util.List;

public class GLMExample {
    public static void main(String[] args) {
        ClientV4 client = new ClientV4.Builder("YOUR_Z_AI_API_KEY").build();
        
        List<ChatMessage> messages = new ArrayList<>();
        ChatMessage userMessage = new ChatMessage(
            ChatMessageRole.USER.value(),
            "Explain polymorphism in Java"
        );
        messages.add(userMessage);
        
        ChatCompletionRequest request = ChatCompletionRequest.builder()
            .model("glm-4.7-flash")
            .messages(messages)
            .temperature(0.7)
            .maxTokens(1024)
            .build();
        
        ModelApiResponse response = client.invokeModelApi(request);
        System.out.println(response.getData().getChoices().get(0).getMessage().getContent());
    }
}

Alternative API Providers

OpenRouter

curl https://openrouter.ai/api/v1/chat/completions 
  -H "Content-Type: application/json" 
  -H "Authorization: Bearer YOUR_OPENROUTER_KEY" 
  -d '{
    "model": "z-ai/glm-4.7-flash",
    "messages": [{"role": "user", "content": "Hello"}]
  }'

Pricing: $0.07/M input, $0.40/M output

Together AI

curl https://api.together.xyz/v1/chat/completions 
  -H "Content-Type: application/json" 
  -H "Authorization: Bearer YOUR_TOGETHER_KEY" 
  -d '{
    "model": "zai-org/GLM-4.7",
    "messages": [{"role": "user", "content": "Hello"}]
  }'

Use Cases

1. Full-Stack Development

# Example: Generate a React component
messages = [{
    "role": "user",
    "content": """Create a React component for a searchable dropdown menu with:
    - Support for async data loading
    - Keyboard navigation
    - TypeScript types
    - Accessible ARIA labels"""
}]

# GLM-4.7-Flash excels at both frontend and backend tasks

2. Code Review & Debugging

# Example: Debug complex code
messages = [{
    "role": "user",
    "content": """Review this Python code for bugs and improvements:

```python
def process_data(data):
    result = []
    for item in data:
        if item.value > 0:
            result.append(item.value * 2)
    return result

Suggest optimizations and potential issues.""" }]


### 3. Browser Automation & Web Scraping

```python
# Example: Generate Selenium script
messages = [{
    "role": "user",
    "content": """Write a Selenium script to:
    1. Login to a website
    2. Navigate to the dashboard
    3. Extract table data
    4. Save to CSV
    
    Include error handling and wait conditions."""
}]

4. Long-Form Content Generation

# Example: Creative writing
messages = [{
    "role": "user",
    "content": """Write a 2000-word technical blog post about:
    - The evolution of container orchestration
    - Docker vs Kubernetes comparison
    - Best practices for production deployments
    - Future trends in cloud-native computing"""
}]

5. Multi-Language Translation

# Example: Context-aware translation
messages = [{
    "role": "user",
    "content": """Translate this technical documentation from English to Chinese:
    
    'Container orchestration platforms like Kubernetes provide automated deployment,
    scaling, and management of containerized applications. They abstract away the
    underlying infrastructure complexity while offering robust service discovery,
    load balancing, and self-healing capabilities.'
    
    Maintain technical accuracy and cultural context."""
}]

6. Tool Use & Function Calling

# Example: Agentic workflow with tool calling
import json

tools = [
    {
        "type": "function",
        "function": {
            "name": "search_documentation",
            "description": "Search technical documentation",
            "parameters": {
                "type": "object",
                "properties": {
                    "query": {"type": "string"},
                    "source": {"type": "string", "enum": ["stackoverflow", "github", "docs"]}
                },
                "required": ["query"]
            }
        }
    }
]

messages = [{
    "role": "user",
    "content": "Find information about React hooks best practices"
}]

response = client.chat.completions.create(
    model="glm-4.7-flash",
    messages=messages,
    tools=tools,
    tool_choice="auto"
)

Troubleshooting

Common Issues and Solutions

Issue 1: Out of Memory (OOM) Errors

Symptoms:

CUDA out of memory. Tried to allocate XX.XX GiB

Solutions:

# Solution 1: Use quantization
vllm serve zai-org/GLM-4.7-Flash --quantization awq

# Solution 2: Reduce context length
vllm serve zai-org/GLM-4.7-Flash --max-model-len 32000

# Solution 3: Enable CPU offloading (Transformers)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_PATH,
    device_map="auto",
    offload_folder="offload",
    offload_state_dict=True
)

# Solution 4: Use gradient checkpointing
model.gradient_checkpointing_enable()

Issue 2: Slow Inference Speed

Solutions:

# Use vLLM with quantization
vllm serve zai-org/GLM-4.7-Flash 
  --quantization awq 
  --gpu-memory-utilization 0.95

# Enable Flash Attention (if supported)
pip install flash-attn --no-build-isolation

# Use SGLang with speculative decoding
python3 -m sglang.launch_server 
  --model-path zai-org/GLM-4.7-Flash 
  --speculative-algorithm EAGLE

Issue 3: llama.cpp Not Recognizing Model

Symptoms:

error: unknown model architecture: 'glm4moelite'

Solution:

# Ensure you're using the latest llama.cpp
git pull origin master
make clean && make

# Use models from official GGUF repositories
# Download from: https://huggingface.co/ngxson/GLM-4.7-Flash-GGUF
# or: https://huggingface.co/unsloth/GLM-4.7-Flash-GGUF

Issue 4: Import Errors with Transformers

Solution:

# Always install latest Transformers from GitHub
pip uninstall transformers -y
pip install git+https://github.com/huggingface/transformers.git

# Verify installation
python -c "from transformers import AutoModelForCausalLM; print('Success')"

Issue 5: Model Download Fails

Solutions:

# Solution 1: Use huggingface-cli
pip install huggingface_hub
huggingface-cli download zai-org/GLM-4.7-Flash --local-dir ./models

# Solution 2: Set HF mirror (for China users)
export HF_ENDPOINT=https://hf-mirror.com
huggingface-cli download zai-org/GLM-4.7-Flash

# Solution 3: Download via Git LFS
git lfs install
git clone https://huggingface.co/zai-org/GLM-4.7-Flash

Issue 6: vLLM Installation Fails on Windows

Solution:

# Windows: Use WSL2 (recommended)
wsl --install
wsl --set-default-version 2

# Inside WSL2:
pip install vllm

# Alternative: Use Docker Desktop with WSL2 backend
docker run --gpus all -p 8000:8000 vllm/vllm-openai:latest   --model zai-org/GLM-4.7-Flash

Frequently Asked Questions

General Questions

Q: What is the difference between GLM-4.7-Flash and GLM-4.7?

A: GLM-4.7-Flash is the free-tier, optimized version with:

  • Same 30B-A3B architecture
  • Slightly lower benchmark scores (e.g., 59.2 vs 73.8 on SWE-bench)
  • Free API access (vs paid for GLM-4.7)
  • Optimized for cost-effective deployment
  • Same 200K context window

Q: Can I use GLM-4.7-Flash commercially?

A: Yes, GLM-4.7-Flash is open source. Check the model card on HuggingFace for specific license terms.

Q: How does MoE architecture improve efficiency?

A: MoE uses only ~3B active parameters per token (out of 30B total), reducing:

  • Computation requirements
  • Memory bandwidth
  • Inference latency
  • While maintaining 30B model knowledge

Q: What is the context window limit?

A: GLM-4.7-Flash supports 202,752 tokens (200K) theoretically. Practical limits depend on VRAM:

  • 24GB GPU: ~32K tokens (full precision)
  • 48GB GPU: ~80K tokens
  • 80GB GPU: ~150K tokens
  • Use quantization for longer contexts

Technical Questions

Q: Which framework should I use?

A:

  • Transformers: Simplest, good for learning
  • vLLM: Best for production, highest throughput
  • SGLang: Fastest with speculative decoding
  • llama.cpp: Best for CPU, quantized models, consumer hardware

Q: What quantization should I use?

A:

  • Q4_K_M (4-bit): Best balance (17GB, minimal quality loss)
  • Q6_K (6-bit): Higher quality (25GB)
  • AWQ (4-bit): Best for vLLM production
  • Q2_K (2-bit): CPU-only with 128GB+ RAM

Q: Can I run this on Apple Silicon?

A: Yes:

  • Transformers: Full MPS support
  • llama.cpp: Excellent Metal acceleration
  • vLLM: Limited support (use Docker)
  • Recommended: M2 Ultra or M3 Max with 64GB+ RAM

Q: How do I enable function calling?

A:

# Use tool-call-parser flag
vllm serve zai-org/GLM-4.7-Flash --tool-call-parser glm47

# Or in API:
tools = [{
    "type": "function",
    "function": {
        "name": "get_weather",
        "parameters": {...}
    }
}]

Q: What is Multi-Token Prediction (MTP)?

A: MTP is a speculative decoding technique that:

  • Predicts multiple tokens simultaneously
  • Reduces latency
  • Improves throughput
  • Requires more VRAM (~5GB extra)

Enable with: --speculative-config.method mtp

Q: How do I deploy in production?

A: Best practices:

  1. Use vLLM with quantization
  2. Deploy behind load balancer (Nginx)
  3. Enable monitoring (Prometheus)
  4. Use Docker/Kubernetes
  5. Set appropriate max-model-len
  6. Configure request batching
  7. Enable logging

Q: Can I fine-tune GLM-4.7-Flash?

A: Yes, use:

  • LoRA/QLoRA: Memory-efficient
  • Full fine-tuning: Requires significant compute
  • Recommended tools: Hugging Face PEFT, Axolotl, LLaMA-Factory

Q: What is the difference between FlashX and Flash?

A:

  • GLM-4.7-Flash: Free, 1 concurrency
  • GLM-4.7-FlashX: Paid ($0.07/$0.40 per M tokens), unlimited concurrency, faster

Performance Optimization Tips

1. Enable KV Cache Optimization

# Transformers
model.generation_config.use_cache = True

# vLLM automatically uses PagedAttention for efficient KV cache

2. Batch Requests for Higher Throughput

# vLLM supports continuous batching automatically
vllm serve zai-org/GLM-4.7-Flash 
  --max-num-batched-tokens 8192 
  --max-num-seqs 256

3. Use Tensor Parallelism for Multi-GPU

# Distribute model across 4 GPUs
vllm serve zai-org/GLM-4.7-Flash 
  --tensor-parallel-size 4

4. Optimize Context Length

# Only use context you need
# Longer context = more VRAM + slower inference

# Good: Targeted context
messages = [
    {"role": "system", "content": "You are a coding assistant."},
    {"role": "user", "content": "Write a function..."}
]

# Avoid: Excessive context
# messages with 100K tokens of history

5. CPU Optimization (llama.cpp)

# Use all CPU cores
./main -m model.gguf -t $(nproc) -p "prompt"

# Enable mmap for faster loading
./main -m model.gguf --mlock --mmap

Comparison with Other Models

GLM-4.7-Flash vs Competitors

FeatureGLM-4.7-FlashDeepSeek-V3Qwen3-30B-A3BLlama-3.1-70B
Parameters30B (3B active)685B30B (3B active)70B
Context200K128K200K128K
SWE-bench59.2-22.0-
AIME 202591.6-80.4-
API CostFree~68x cheaper than Claude~$0.10/MVaries
Open Sourceโœ…โœ…โœ…โœ…
Tool Callingโœ… (79.5)โœ…โœ…Limited
Best ForCoding, AgentsProgrammingGeneral, ReasoningGeneral

Official Resources

Inference Frameworks

Community Resources

  • LM Studio: Pre-configured GUI for running GGUF models
  • Ollama: Simple local deployment (model available as glm4.7-flash)
  • OpenRouter: Third-party API access
  • Together AI: Managed inference API

Conclusion

GLM-4.7-Flash represents a significant advancement in open-source language models, offering:

โœ… Exceptional coding capabilities (59.2 on SWE-bench Verified)
โœ… Strong agentic performance (79.5 on ฯ„ยฒ-Bench)
โœ… Free API access with 1 concurrency
โœ… Multiple deployment options (vLLM, SGLang, llama.cpp, Transformers)
โœ… Efficient MoE architecture (3B active from 30B total)
โœ… Massive context window (200K tokens)

Whether youโ€™re building coding assistants, agentic workflows, or creative applications, GLM-4.7-Flash provides a powerful, cost-effective solution that rivals proprietary models while remaining fully open source.

Quick Start Checklist

  • Determine hardware requirements based on quantization
  • Choose deployment method (vLLM recommended for production)
  • Install dependencies for your platform
  • Download model weights or GGUF quantization
  • Test with sample prompts
  • Integrate into your application
  • Monitor performance and adjust parameters

Last Updated: January 20, 2026
Model Version: GLM-4.7-Flash (January 19, 2026 release)
Guide Version: 1.0

For updates and corrections, please visit the official Z.AI documentation or join the community Discord.

Comments

Sign in to join the discussion!

Your comments help others in the community.